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Abstract— A method for pole assignment is developed following a conjecture arising from the 
observation of assigning a single pole in the case of a one-state system and/or a single pole for a single 
input system.  The method is first justified for extreme cases, and then proved for the general case. The 
method does not rely on state transformation; and applies to multi-input systems equally well. The 
uncontrollable case is also considered, with subsequent simplifying relationships, where in certain cases 
the matrix inverse involved in computations reduces any left inverse of the input matrix. 
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1. INTRODUCTION   

Pole assignment and eigenvalue assignment are the same. They are needed to 

stabilize systems, control the speed of response, and together with the eigenvectors 

shape the system’s response. The literature is full of so many methods, each offering its 

own advantageous features. 

Since we are focusing on a particular conjectural approach and have no intention 

to delve into the vast area of research on pole assignment, we refer the reader to some 

books on the subject matter [1, 2], in addition to adequate references quoted below. 

In a cursory account, the problem of pole assignment has been tackled through 

many approaches ranging from geometric methods [3], dyadic based methods [1, 2], 

eigenstructure methods [4-7], explicit determination [8], recursive methods [9], closed 

loop robustness [10], minimization of certain condition numbers [11], and use of upper 

block Heisenberg forms which use numerically preferable orthogonal transformation 

[12-23], to mention but a few. 

Most methods do not require knowledge of the closed loop eigenvectors. A 

design option is worth consideration in some applications involving robustness [10] 

and system response shaping [4, 5]. In discrepancy to the entire eigenstructure method 

[4-7] that requires all n closed loop eigenvectors, the method described in this paper 

requires some of these eigenvectors depending on the rank m of the input matrix B.  

A hyperplane design of variable structure systems fits within the general 

problem of state feedback as a special case. Therefore, pole assignment can benefit 

from such methods that are specific to the hyperplane design. Zinober [24] has 

provided a CAD VSC Toolbox written in MATLAB programming environment. His 

design approaches were based on theories of quadratic performance minimization, 

eigenstructure assignment, sensitivity reduction, eigenvalue assignment within a 

sector, disc, and vertical strip. Such notions help fulfill requirements of system 

specifications like: settling time, rise time, maximum overshoot and steady state errors. 
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Recent applications of the pole placement are in civil structures subjected to 

earthquake excitation [25], and to second order systems [26]. Besides, pole placement 

has been implemented through a derivative and acceleration feedback [27, 28]. 

In order to carry out the assignment process, a maximum of n - m closed loop 

eigenvectors is needed. In this respect, the method is partly based on eigenvalue– 

eigenvector assignment. The first introduction of eigenvalue - eigenvector assignment 

in shaping system transient response has been given in [4].  The technique is a subject 

of an entire book by Liuet et al., [18]; and has been surveyed by White [19]. 

Throughout the history of science, conjectures have always been a starting point 

for many theorems and scientific facts.  Such a conception is considered in this work. 

The purpose of our study is to prove a conjecture regarding an assignment law 

based on an observation concerning the assignment of a single eigenvalue for the 

trivial case n = 1, i.e. a single state system, and then to the case of assigning a single 

eigenvalue when n > 1 and m = 1. The extreme case where m = n, and the nonsingular 

input matrix further enhances the conjecture. 

The application of the method does not distinguish between controllable and 

uncontrollable systems, between single-input or multi-input systems. It does not     

need state transformation; and is applicable to a repeated and complex eigenvalues 

assignment.   

The derivation ends up with a solution of two sets of matrix equations. The 

extension of the method to uncontrollable systems is straightforward; and it offers 

some cut down measures in the calculations involved.  

2. BASIS OF THE CONJECTURE 

The terms poles and eigenvalues are the same since the poles of a transfer 

function are the eigenvalues of the system A matrix.  In addition, the assignment and 

placement terms are used interchangeably.   

The pole placement control law considered in this paper is a state feedback law 

of the form u = K x applied to the system: 

  x Ax Bu


                                                                                                                                        
(1) 

where 𝑥 ∈ 𝑅𝑛 , 𝑢 ∈ 𝑅𝑚  and B have full rank m. The closed loop system is therefore given 
by:  

  ( )x Ax BK x A B K x


                                                                                            (2) 

The assignment problem seeks convenient methods for the calculation of K; the 

control literature teems with countless methods, which result in an assignment of n 

desirable poles.  

Among the myriad methods is a method utilizing eigenvectors known as the 

entire eigenstructure assignment method [5-7]. With this method, the closed loop 

eigenvalue-eigenvector pair ,i iw  for i = 1 to n has to satisfy the assignment condition 

as formulated in [5, 18], i.e. satisfying the following condition: 

  

[ ] 0 ; where
i

i n i i

i

w
A I B z K w

z


 
   

                                                            

(3) 
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To avoid determination of null spaces, as the classic entire eigenstructure method 

requires, the solution problem is formulated as a solution of a system of linear 

equations: 

  
( )i n i iA I w B z                                                                                                             (4) 

The solutions obtained are dependent on Zi which takes arbitrary values. As 

established by the theories of linear algebra, when 
i  is an eigenvalue of A, more than 

one solution may exist for
iw .  This adds to the flexibility of the method. 

 The reasoning behind the conjectural approach goes like this:  

Suppose we are to assign a single eigenvalue (pole)  to a scalar system i.e.  n = 1,   

then   ,   ,A B  ,  and w  are all scalars  represented as , , , anda b w  such as: 

  a bK    

  
1 1 1( )K b a b b a                                                                                                        (5) 

or formulated using the determinant method as: 

  
( )ns I A B K s  

                                                                                                            
(6) 

where ( )s  is the closed loop characteristic equation. For our special case, Eq. (6) is 

reduced to: 

  
1 1s a b K s K b b a        

                                                                     
 (7) 

 The above form also shows up when considering some well-known methods for 

the pole assignment such as the Ackermann's method [23].  

  
1 1[0 0 ... 1] ... ( )nK B AB A B A                                                                (8) 

where ( )A  is the desirable closed loop characteristic equation evaluated at A. When 

adapted to the single-state case, it results in the following K: 

  
  

1 1 11 ( )K b a b b a 
                                                                                       (9) 

It also shows up when adapting the entire eigenstructure method to the single state 

case, so: 

  
( ) 0a w b Kw    

  
( ) 0a w b z    

  
1 1( )z b b a w    , 1where  K z w                                                                     (10) 

which results in the following: 

  
1 1K b b a                                                                                                                     (11) 

Furthermore, suppose now, we are to assign only a single eigenvalue to a system 

where n > 1 and m = 1, i.e. 1w  is not now a scalar, but a non-zero vector, so:  

  1 1 1( )A B K w w                                                                                                               (12) 

or 

  1 1 1( )nB K w I A w                                                                                                        (13) 

What distinguishes this case is that B has no reciprocal. To facilitate a solution 

and avoid using generalized inverses of matrices, we premultiply Eq. (13) by an m x n  

matrix G such that GB is nonsingular, ending with:  
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  𝐾 =  (𝐺𝐵)−1(𝜆1𝐺 − 𝐺𝐴) =  (𝐺𝐵)−1𝜆1𝐺 −  (𝐺𝐵)−1 𝐺𝐴                                                     (14) 

This equation has the same form as that of Eq. (11). But here, (𝑏)−1  is replaced by 

(𝐺𝐵)−1. As a matter of fact, 1( )G B G  is effectively a left inverse of B . Attempting to 

assign more than one eigenvalue, we have to solve for:  

  
( )                    1,  2,  ....,i i iA B K w w i n                                                                   (15) 

when Eq. (15) is put in a matrix form, it has to assume the following form:  

  ( )A B K W W    

  B KW W AW                                                                                                             (16) 

where   is an n x n matrix  in a block matrix  form specifying the n  eigenvalues to be 

assigned; and W is an n x n matrix containing the associated closed loop eigenvectors.   

For the assignment of more than one eigenvalue, Eq. (16) does not permit a 

solution for the form given in Eq. (14) as multiplication by G does not result in an 

isolation of K as W cannot be factored out.  So, in order to facilitate a solution in the 

case where m > 1 and/or W is a multi-column matrix, a need arises to conjure a 

solution and prove its validity. This is the main theme of this paper as discussed below. 

3. VALIDATION AND PROOF 

The observations leads to the following conjecture stated as a theorem: 

Theorem 3.1: 

Given M and G as m x m and m x n matrices, the following feedback matrix: 

   1( )K G B M G G A                                                                                                       (17) 

assigns m eigenvalues specified by M, and the remaining n – m eigenvalues through a 

particular choice of G.  

Proof: 

The conjecture has been validated for the single state case where n > 1 together 

with a single pole assignment case. 

It is also beneficial to validate our conjecture for the other extreme case of 

assigning n eigenvalues when B is square and nonsingular i.e. its rank is m which is 

also equal to n.  In this case the whole set of the desired eigenvalues are those of  n x n 

matrix  . 

  ( )A B K                                                                                                                        (18) 

Both sides of Eq. (18) are premultiplied by a square nonsingular matrix G. Since 

both B and G are nonsingular, their product GB is nonsingular, giving: 

  
1 11( ) ( ) ( ) ( )K GB G G A GB AG GG G                                                           (19) 

Without loss of generality, the matrix 1G G can be re-named as M as the two 

matrices have the same set of eigenvalues. Hence, we obtain Eq. (17) and the conjecture 

is validated for this extreme special case as well.  

Although one may argue that since B is nonsingular, why not to use 
1 ( )K B A   or 1 ( )K B M A   instead.  This is true, and it is even more explicit, 

but greater flexibility   may be gained when   premultiplied by G, especially since we 
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know that for the multi-input case it is well known that the feedback matrix is not 

unique.  In other words, we get a much broader class for K. 

It remains to prove the conjecture for the general case where B is multi-input and 

non-square, i.e. the assignment of n eigenvalues when B is a n x m matrix. To do that, 

decompose the eigenvalues and eigenvectors into two sets: m eigenvalues specified 

through m   and n - m  eigenvalues specified through  n m  , in conjunction with their 

associated eigenvectors  mW  , and  n mW   respectively which are obtained using Eq. (4); 

  

0
[ ] , and

0

m

n m n m n

n m

W W W 



 
   

 
                                                              (20) 

Substituting K  as in Eq. (17), we get: 

                                                                                                                                                    (21) 
 

 

 

 

Premultiplying both sides of Eq. (20) by G , the can be simplified as follows: 

  

1
0

( ( ) ( ))[ ] [ ]
0

m

m n m m n m

n m

G A B GB MG GA W W G W W

 



 
    

 
 

  

1
0

( ( ) ( ))[ ] [ ]
0

m

m n m m n m

n m

GA GB GB MG GA W W GW GW

 



 
    

 
 

  

0
( ( ))[ ] [ ]

0

m

n m n m m n m

n m

GA I MG GA W W GW GW 



 
    

 
 

  

( GA MG GA 
0

))[ ] [ ]
0

m

m n m m n m

n m

W W GW GW 



 
  

 
 

By invoking the product of partitioned (block) matrices, 

  

0

( )[ ] [ ]

0

m m n m

m n m m n m

n m m n m

MG W W GW GW

 

 

  

 
 


 
  

 

  
[ ] [ ]m n m m m n m n mMGW MGW GW GW                                                            (22) 

 Hence,  

  m m mM GW GW                                                                                                                (23) 

and 

  n m n m n mM GW GW                                                                                                           (24) 

we have two sets of matrix equations where G, and M are to be determined.  

 It is recalled that G is a m x n matrix and GB has to be a m x m square matrix and   

invertible.  Such a requirement imposes the only choice of letting: 

or  

  
 

n mG W 

   
                                                                                                                             

(26) 

  
0n mGW                                                                                                                                 (25) 

1
0

( ) ( ( ) ( ))[ ] [ ]
0

m

n n n m n m m n m

n m

A BK W W A B GB MG GA W W W W

 



 
        

 
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That is, G is a non-unique left annihilator of n mW   [20-22].  If instead, we take 0mGW  , 

then, G will be an (n – m) x n matrix. Consequently GB will not be square unless n = 2m.  

Any G, which satisfies Eq. (25), results in the assignment of n – m eigenvalues 

whose eigenvectors are n mW  . It is also important to point out that the m eigenvectors 

mW associated with the m  eigenvalues are necessarily independent of n mW  .  Therefore, 

mW  and n mW   constitute a basis for 𝑅𝑛 and since G annihilates n mW  , it can never   

annihilate mW , i.e. the m x m mGW  product is a nonsingular square matrix, hence 

invertible.  This fact is needed to find a solution for Eq. (23) getting: 

  
1( ) ( )m m mM GW GW                                                                                                        (27) 

The choice of G as in Eq. (26) and M as in Eq. (27) results in an assignment of a 

total of n eigenvalues together with their associated eigenvectors.  A corollary is now in 

order. 

Corollary 3.1: 

m eigenvalues are assigned through M irrespective of G and W . 

Proof: 

Recall that , , andm mM GW  are all square matrices. Since matrices M  and m  

are related through a similarity transformation, they have the same set of eigenvalues.  

The m  eigenvalue of M  is the m eigenvalues of m  . 

Furthermore, let  M stands for the eigenvalues of M . The following fact 

regarding the product of matrices is invoked: 

  
   1 1( ) ( ) ( ) ( )m m m m m m mM GW GW GW GW                                         (28) 

G , and mW  do not influence the eigenvalues of M . Consequently, an M can be 

specified regardless of Eq. (27) if the assignment of m  eigenvectors is not needed, thus 

easing the design process. 

In other words, the assignment of the m eigenvalues is guaranteed irrespective of 

G and irrespective of the remaining n – m eigenvalues and associated eigenvectors 

n mW  .  However, according to Eq. (26) a specific G family is still needed to ensure the 

assignment of the remaining n m  eigenvalues and an invertible GB matrix.  

In summary, for controllable systems, n – m eigenvectors are needed to assign     

n – m eigenvalues with their corresponding n mW   eigenvectors leading to a G matrix 

that annihilates n mW  . For the remaining m eigenvalues, a family of M matrices with 

the same eigenvalues as m does the job irrespective of G and Wm.  However, if the 

associated m eigenvectors are to be also assigned then M   is constructed as in Eq. (27).  

In all cases, the product GB should be nonsingular. For uncontrollable systems, the 

requirement of the n - m eigenvectors can be relaxed as commented in the following 

section. 
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4. UNCONTROLLABLE SYSTEMS 

The uncontrollable case requires no additional substantiation. As has been shown 

above, M  assigns any desirable m eigenvalues.  However, this ability excludes the 

assignment of uncontrollable eigenvalues within M . Otherwise, we will have a 

violation of the proved fact that uncontrollable eigenvalues cannot be changed by state 

feedback.  Therefore, any uncontrollable eigenvalue has to be re-assigned through the  

n – m set of eigenvectors through G, but not through M . Otherwise, a nonsingular GB  

cannot be obtained. 

A simplifying property arises   in the case where we have a maximum number of 

n – m uncontrollable eigenvalues. An arbitrary G can be chosen in this case provided 

that a nonsingular GB is ensured. Any left inverse of B can be taken as G for this special 

case. Besides, an attractive systematic fulfillment is the choice TG B , which always 

results in a nonsingular GB equal to TBB  in this special case. TBB  is always 

nonsingular for full rank B  matrices, [22]. 

It is worth mentioning that although uncontrollable eigenvalues cannot be 

changed by state feedback, their associated right eigenvectors can provide extra 

degrees of freedom for shaping the system’s response.  

5. EXAMPLES 

The examples are chosen of low order for the ease of following and rapid 

checking of the results. We could have used examples with real or irrational numbers 

as expected when modeling practical systems.  However, such an attempt will make 

following the solution harder with no justification.  

Example 1: 

Consider the single input uncontrollable system: 

  

 -7     3      3  1

 -6     1      4  1

  0     1     -2  0

x x u


   
   

 
   
      

                                                                                             (29) 

The rank test of controllability reveals that: 

  
2([ ]) 2 3rank B AB A B n                                                                                             (30) 

Hence, the system is uncontrollable.  To determine the uncontrollable eigenvalue, we 

may use the fact that: 

  3[ ]A I B
                                                                                                                      

(31) 

loses rank when   is an uncontrollable eigenvalue.  

The test shows that -1  is an uncontrollable eigenvalue, so it has to be re-assigned. 

State feedback leaves the uncontrollable eigenvalues invariant, but it permits the        

re-assignment of the right eigenvectors.   

In addition to the -1 re-assignment, it is also desired to assign the two 

eigenvalues: -2 and -5. 

The -1 uncontrollable eigenvalue cannot be reassigned through M  but through 

G.  The -5 eigenvalue is chosen to be assigned through G for the sake of exercising. 
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According to Eq. (4), and in order to get integer values for the eigenvectors we let       

Z1 = -2 and Z2 = -18. The two eigenvectors associated with the -5 and -1 eigenvalues are 

respectively: 

  
1

5

-

2

 3w

 
 


 
  

     and    

2

1 1

1

w

 
 


 
  

                                                                                             (32) 

The annihilating G matrix according to Eq. (26) is unique to a scalar multiplier 

given by:  

  

2 2

[ 5 1] 3 1

1 1

n mG W w w



 



 
 

  
 
  

 1 0 2G                                                        (33) 

By inspection, G is: 

  
 1 0 2G                                                                                                                          (34) 

Using Eq. (24), 2m    yields 2M    , irrespective of mGW
 
which is a scalar in our 

case.  Using Eq. (17), K  is determined and is equal to: 

  
K = [ 5    -5   -3]                                                                                                                       (35) 

which results in the assignment of the -1, -2 and -5 eigenvalues. 

Example 2: 

Consider a two-input system given by: 

  

    -1     1     1     1    0     1

     0    -2     1     1    0    -1

     3     1    -2     2    1     1

    -3    -1    -1    -5   -1    -1

x x u


   
   
    
   
   
   

                                                                        (36) 

Using the controllability tests, it turns out that -1 and -3 are uncontrollable eigenvalues. 

It is desired to assign the two eigenvalues 2 j  , along with the uncontrollable 

eigenvalues -1 and -3. 

 Once more, the -1 and -3 eigenvalues should be reassigned throughG . 

Otherwise, we get a non-invertible GB matrix.  Furthermore, we either calculate G as 

the annihilating matrix of the two eigenvectors associated with the -1 and -3  

eigenvalues since the system has a maximum number of uncontrollable eigenvalues, or 

we may choose any arbitrary G  matrix such that GB  is nonsingular.  We make things 

simple and choose the most systematic option, i.e. TG B , yielding:  

For the complex pair, we can choose any matrix of real numbers having 2 j   as 

eigenvalues. One selection is 
2 1

1 2
M

  
  

 
 , in which case, using Eq. (17), we get K

as: 

  

0 0 1 1

1 1 1 1

TG B
 

   
  

                                                                                                 (37) 
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 -3.5    0.5     -2    -1

   0       -1       1     -1
K

 
  
 

                                                                                                 (38) 

which results in the assignment of the four eigenvalues 2 j  ,-1 and -3. 

For both uncontrollable systems considered above, the K matrix is not unique 

even for a single input case. Therefore, if the results are to be checked by other 

methods, different values for K  may be obtained.  In fact, using our method with an 

alternative G results in a different K . 

Example 3: 

A system  is randomly generated using MATLAB: 

  

4    5    3     4 2

    1     6    1    2    1

    1    1     4    5     2

     3    3    1    1    1 

x x u


 

  

   
   
    
   
   
  



                                                                                           (39) 

It is required to assign repeated eigenvalues such as: -5, -5, -4 and -4.  

The calculations proceed as follows (see appendix, where short format of 

MATLAB is used for brevity): 

Using Eq. (4) with z = -1, the eigenvector needed to assign the eigenvalue -5 is: 

  
 1

45 [ 5 ]    0.4671 0.0338    0.0365 0.5658
T

w A I B     
                                 

(40) 

The second -5 eigenvalue is assigned through M. 

Using Eq. (4) with z = -1, the eigenvector needed to assign the eigenvalue -4 is: 

  
 1

44 [ 4 ]    1.0013 0.0039 0.3822 1.2111
T

w A I B    
                                     

(41) 

A third eigenvector 4wg  is needed. It is taken as a generalized eigenvector 

associated with the 4  eigenvalue, as shown in [15]. Symbolic MATLAB is used to do 

the calculations as shown in the appendix.  

Giving: 

  
 

 𝑤𝑔4 = [−235553      16942     − 157964      281080]𝑇/ 201243                                       (42) 
 

  G = [ 84282/55835,    -541843/167505,    -137096/167505,    1]                                    (43) 

And 

  K = [795719/17634, -2667827/35268, -202258/8817, 1039805/35268]                      (44) 

Note that MATLAB represents numbers as rational numbers when calculating 

symbolically.  

Checking the validity of K (see appendix) confirms the assignment of, -5, -5, -4 

and -4 as intended. 

6. CONCLUSIONS 

A conjecture has been set forth after considering the assignment of a single pole 

to the trivial case of a single-state system, assignment of a single pole to an nth order 

system, and assignment of n poles to the extreme case of a system with a nonsingular B 

matrix. The conjecture is then proved for the general case of non-square B matrices by 
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solving two sets of matrix equations. The method neither distinguishes between 

controllable or uncontrollable systems nor between single-input or multi-input cases. 

The application of the method is even made simpler in certain cases of uncontrollable 

systems. Examples are included to demonstrate the validity of the state feedback 

control law. 

APPENDIX 

syms lam, 

ws = inv(A - lam*eye(4))*B , % ws is too lengthy to be listed down. 

wg = diff(ws, lam)              , % wg is too lengthy to be listed down. 

wg4 = subs(wg, -4), 

G = (null([w4  wg4  w5 ].')).',  

K = inv(G*B)*(-5*G - G*A),  %  M = -5  

E = jordan(A+B*K), 
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